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Abstract

How can we evaluate the performance of a policy institution? An evaluation based
on realized outcomes over time is flawed, since different time periods can witness
both different economic environments and different economic or geopolitical shocks.
In this work, we show that it is possible to quantitatively evaluate and rank policy
performance using only two estimable statistics: (i) the impulse responses of the policy
objectives to policy shocks, and (ii) the impulse responses of the same policy objectives
to non-policy shocks, e.g., aggregate demand shocks, energy price shocks, productivity
shocks, or war shocks. For a large class of models, the correlation between these two
sets of impulse responses directly captures the performance of the policy institution: A
correlation of zero indicates best performance —the policy institution could not have
reacted any better to the shocks that affected the economy—, while a correlation of
one (in absolute value) indicates worst performance —the institution could have (but
did not) perfectly met its objectives by undoing the effects of the non-policy shocks—.
We use our methodology to evaluate US monetary policy over the past 150 years; from
the Gold standard period, the early Fed years and the Great Depression to the post
World War II period and the post-Volcker regime.
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1 Introduction
How can we evaluate and compare the performance of policy institutions over time? A naive
approach would be to evaluate performance based on realized economic or social outcome
variables. For instance, we could compare central bank chairs based on average inflation and
unemployment outcomes, or presidents of countries based on average growth and change
in inequality. While such approach is commonly adopted in the popular press, it suffers a
number of major problems: (i) different policy makers face different initial conditions, e.g.
a president can inherit a strong or weak economy from her predecessor, (ii) different policy
makers face different economic shocks, e.g. oil price shocks can affect the ability of central
banks to control inflation but their occurrence is not controlled by the central bank, and (iii)
different policy makers face different structural economic environments, e.g. a decline in the
slope of the Phillips curve creates a new environment which requires a different approach to
offsetting adverse shocks.

This triplet of confounding factors coming from different initial conditions, different
structural shocks and different economic environments severely complicates the evaluation
of policy makers based on realized outcomes.1

To make progress it is instructive to consider an ideal, yet infeasible, approach for com-
paring policy makers: an experimental setting. Consider setting up a laboratory, in which
different policy makers enter and are subjected to the same initial conditions and economic
environment. Subsequently they are exposed to the same sequence of shocks and can make
decisions that aim to achieve their mandates. Afterwards, we can compare their performance
based on any desired outcome variables and conclude which policy maker performed better.
Since the only variation in outcomes comes from the decisions of the policy makers, such
comparison would be on equal grounds.

The objective of this paper is to develop econometric methods that can bring us closer
to mimicking this ideal experiment using observational data.

To set up our approach, we formalize the actions that the policy maker could take in
terms of a generic reaction function which captures how the policy maker responds to all
endogenous and exogenous variables in the economy. Importantly, we will not assume that
we know or can estimate this function, we merely pose its existence. Further, we aggregate
the different outcome variables of interest in a quadratic loss function. The choice for the
variables in the loss function is determined by the researcher conducting the comparison.2

Finally, we assume that the underlying economic model falls in a general class of linear
forward looking models, which includes a large number of models that are commonly used
for policy making, such as log linearized New Keynesian models, structural VARs, linear

1See Fair (1978) for an early discussion of these points.
2Note that it is not our objective to evaluate policy makers based on their own, often unknown, objectives.
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rational expectation models, etc.
For this set-up our evaluation of policy performance is based on measuring the distance

between the policy maker’s reaction function and the optimal reaction function —the sys-
tematic response to all endogenous and exogenous variables that minimizes the expected
loss function—. We formalize this distance as a multi-dimensional object with elements
that measure how the response to any non-policy shock should have been adjusted for each
policy instrument. We compute these individual distances using Optimal Reaction Function
Adjustment (ORA) statistics, which exactly measure how the reaction function should have
been adjusted in order to minimize the loss function. ORA statistics are thus defined for
any combination of policy instrument and non-policy shock and they can be aggregated to
obtain an overall measure of performance.

There are three main benefits of using ORA statistics for evaluating and comparing pol-
icy makers. First, by defining optimality in the direction of identified non-policy shocks we
avoid confounding from initial conditions and other structural shocks. Second, by consider-
ing the adjustment to the same non-policy shock and policy instrument we measure distance
in the same units and make the ORA statistic comparable across different economic environ-
ments. Third, and most practically relevant, the ORA statistic depends only on the impulse
responses to policy and non-policy shocks implying that we do not need to know the reaction
function of the policy maker in order to compute the ORA.

In fact, the ORA is the projection of the impulse responses of the objectives to non-
policy shocks on the impulses responses of the objectives to policy shocks with a minus
sign. Intuitively, this follows as in equilibrium the effect of any change in the response to a
non-policy shock on the policy objectives is proportional to the effect of an identified policy
shock on those same objectives; both are innovations to the policy rule. This implies that the
response to a non-policy shock in equilibrium can be written as a sum of the original policy
maker’s response (i.e. the impulse response to the non-policy shock) plus an adjustment
that may lower the loss function, which is proportional to the impulse response to the policy
shock. The optimal adjustment, which minimizes the expected loss function, then uses the
impulse responses to the policy shocks to minimize the impulse responses to the non-policy
shocks; leading to the ORA statistic. Further, if the policy maker’s reaction function was
optimal the impulse responses to the non-policy shocks should be orthogonal to the impulse
responses to the policy shocks; there is no adjustment that the policy maker could have
made that could have further lowered the loss function and the ORA is zero.

In a nutshell, the key insight underlying our work is that the effect of an (unknown)
reaction function is already encoded in the impulse responses to (non-)policy shocks, cap-
turing what the policy maker did and what could have been done. Thus estimating impulse
responses to policy and non-policy shocks is enough to assess (a) the optimality of a policy
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maker’s reaction function, (b) compute the distance of the adopted reaction function to the
optimal reaction function and (c) compare different policy makers based on their reaction
function.

In practice any desired identification and estimation method can be used to estimate the
impulse responses. Inevitably, this requires specifying an econometric model, e.g. choosing
instruments and control variables, but an advantage is that multiple structural models can
imply the same reduced form econometric model. A recent discussion of structural shock
identification can be found in Ramey (2016) and modern impulse response estimation meth-
ods are discussed and compared in, among others, Stock and Watson (2016), Kilian and
Lütkepohl (2017) and Li, Plagborg-Møller and Wolf (2022).

In addition to highlighting how the existing macro econometric literature can be leveraged
for estimating the ORA, we provide provide a convenient one-step GMM approach that (a)
avoids the estimation of the impulse response to the non-policy shocks by a generalized least
squares transformation and (b) yields closed form expressions for the asymptotic variance
of the ORA. The GMM approach is shown compatible with several existing macroeconomic
identification strategies.

To illustrate our methodology, we evaluate and compare the performance of the different
Fed chairs between 1914 and 2018. Over this period the Fed had different chairs who all
inherited a different economy, faced different shocks and economic conditions.

Perhaps surprising, the literature has produced only a few types of methods for evaluating
and comparing macroeconomic policy makers.

An early contribution is Fair (1978) who highlights the distortions stemming from differ-
ent initial conditions and economic environments. His solution was to adopt optimal control
methods to compare policy makers. This approach amounts to specifying a structural model,
calculating what would have been the optimal policy based on the model and comparing the
loss under such optimal policy to the loss under the implemented policy. Clearly such recipe
is general and has been used within the context of other structural models, including New
Keynesian models and larger dsge models (e.g. Gali and Gertler, 2007).

If the proposed model is correctly specified, using such model-based approach for policy
evaluation is appropriate. Unfortunately, specifying the correct model for (i) the economy
and (ii) the behavior of the policy maker is a difficult task. Using our approach we can reduce
the risk of model misspecification as we only require the estimation of impulse responses for
which more robust reduced form econometric methods can be adopted (e.g. Ramey, 2016;
Stock and Watson, 2016).

Moreover, related to (ii) we note that in practice policy makers do not mechanically
follow simple policy rules, and they respond to much more information than captured by a
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few variables.3 In fact, in many practical policy settings, e.g. fiscal or climate, the reaction
function is rarely explicitly modeled, discussed, let alone known, yet it is clear that decisions
are based on some information set. As such, the reaction function can be viewed as a complex
function that incorporates a large information set, but is unlikely that it can be written down
explicitly.4

Outside of specific “model-based” approaches to policy evaluation there exists few meth-
ods for evaluating and ranking policy makers. A notable exception is Blinder and Watson
(2016) who improve on the naive approach to policy evaluation by projecting out specific
non-policy shocks to assess the contribution of such shocks to explain the unconditional dif-
ference between policy makers. While their approach captures the average loss controlling
for the identified non-policy shocks, it does not answer whether a particular policy maker
responded better or worse to any given non-policy shock. The latter is the evaluation criteria
proposed in this paper.5

The remainder of this paper is organized as follows. The next section illustrates our
method for a simple New Keynesian model. Section 3 presents the general environment.
Section 4 provide the key population results for evaluating and ranking policy makers. Details
for the econometric implementation are given in Section 5. The results from the empirical
study for monetary policy are discussed in Section 6. Section 7 concludes.

2 Illustrative example
To provide the intuition for our approach we informally present an example to illustrate how
we can evaluate and compare policy makers based on their reaction function without having
access to the specification of the underlying economic model nor access to their reaction
function. We take the baseline New Keynesian (NK) model as the underlying economy and
postulate that the researcher is interested in evaluating a central bank based on its ability
to control inflation and the output gap under discretion, see Galí (2015, Section 5.1.1). In

3As Svensson puts it, “An optimal policy responds to all relevant state variables (including all relevant
information), and there are many more relevant state variables and much more relevant information than
current inflation and output” (e.g. Svensson, 2003).

4Policy makers repeatedly voice their concern that simple algebraic instrument rules are too simple to
capture the complexity of the underlying economy. For instance, in the context of monetary policy Svensson
(2017) writes “Taylor-type rules are too restrictive and mechanical, not taking into account all relevant
information, and the ability to handle the complex and changing situations faced by policy makers”. Algebraic
rules cannot capture ex-ante all relevant contingencies, and a lot of information may simply be “non-rulable”
(Kocherlakota, 2016; Blinder, 2016). See Blanchard (2018); Blanchard, Leandro and Zettelmeyer (2020) for
similar arguments in the context of fiscal policy.

5To be more specific, the question in Blinder and Watson (2016) is whether the difference in average
GDP growth between republican and democratic presidents survives after projecting out non-policy shocks.
In this context, projecting out the non-policy shocks is clearly appropriate, however, when the interest is in
whether the policy maker responded optimally to non-policy shocks it is not.
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this setting the optimal policy is well understood, and analytically tractable, allowing us to
highlight the main mechanisms of our approach and to link back to the broad NK literature
(e.g. Galí, 2015).6

Specifically, we consider evaluating a central bank based on the loss function

Lt =
1

2
(π2

t + x2
t ) , (1)

with πt the inflation gap and xt the output gap.
The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-

Keynesian model (Galí, 2015) are given by

πt = Etπt+1 + κxt + ξt , (2)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (3)

with it the nominal interest rate set by the central bank and ξt an iid cost-push shock. We
denote by θ the parameter vector that includes all parameters of the Phillips and IS curves;
that is the economic environment in this simple example.

To illustrate our approach suppose that the policy maker decides on the interest rate by
responding to the economy according to

it = ϕππt + ϕξξt + ϵt , (4)

where ϕ = (ϕπ, ϕξ) is the reaction function which captures the systematic response of the
central bank and ϵt is a policy shock. We assume that the structural shocks ξt and ϵt have
mean zero, variances σ2

ξ and σ2
ϵ , and are mutually uncorrelated. As we will see below, the

benefit of including ξt in (4) is that it ensures the existence of a unique equilibrium under
an optimal policy rule, irrespective of the parameter values θ (e.g. Galí, 2015, page 133).

Equilibrium allocation

For any ϕπ > 1 we can write the model for Yt = (πt, xt)
′ and it as

Yt = Γξt +Rϵt and it = Θξξt +Θϵϵt , (5)
6In Appendix A we discuss two other examples. First, we consider the case where the economy is specified

by the same baseline NK model, but now the loss function of the researcher is specified for the entire future
path of inflation and output gaps, i.e. under commitment Galí (2015, Section 5.1.2). Second, we consider
the case where the economy is specified by a general structural VAR model.
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with

Γ =

[
1−κϕξ/σ

1+κϕπ/σ
−ϕπ/σ−ϕξ/σ

1+κϕπ/σ

]
, R =

[
−κ/σ

1+κϕπ/σ
−1/σ

1+κϕπ/σ

]
, Θξ =

ϕπ + ϕξ

1 + κϕ/σ
and Θϵ =

1

1 + κϕπ/σ
,

where Γ and R capture the responses of the structural shocks ξt and ϵt on the policy objec-
tives. Similarly, Θξ and Θϵ capture the effect of the structural shocks on the interest rate.
We stress that each term depends on the reaction function ϕ.

For future reference it is useful to make explicit that representation (5) arises from pre-
multiplying the display below by A−1. 1 −κ 0

0 1 1/σ

−ϕπ 0 1


︸ ︷︷ ︸

=A

 πt

xt

it

 =

 1

0

ϕξ

 ξt +

 0

0

1

 ϵt . (6)

The point to note is that innovations to the reaction function, here ϵt, enter the equilibrium
representation (5) via the expression A−1(0, 0, 1)′ = (R′,Θϵ)

′.

Optimal reaction function

An optimal reaction function is defined as any ϕ = (ϕπ, ϕξ) that minimizes the expected loss
subject to the equations that describe the economy. Formally, let Φ denote the subset of
reaction functions that lead to a unique equilibrium. The set of optimal reaction functions
is given by

Φopt =

{
ϕ ∈ Φ : ϕ ∈ argmin

ϕ∈Φ
ELt s.t. (2) − (4)

}
.

We note that since the economy (2)-(3) is linear and the reaction function (4) allows the
central bank to respond to all available information (i.e. all endogenous variables and struc-
tural shocks) the set Φopt is not a priori constrained.7 Moreover, by virtue of the rule (4) we
have Φopt is non-empty for any θ, see Galí (2015, page 133).

In general Φopt will include infinitely many reaction functions as optimal responses to
structural shocks can often be interchanged with optimal responses to the endogenous vari-
ables. Note that we purposely allow for this possibility as we do not wish to impose any
knowledge of the variables or shocks to which the policy maker responds.

7For instance, if the output gap xt was affected by an additional shock, say a productivity shock, we
would include the output gap or the productivity shock in the policy rule as well.
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Testing the reaction function

As a first step towards evaluating the central bank we consider testing whether the reaction
function of the central bank was optimal.

Let ϕ0 denote the central bank’s reaction function which we assume is unknown to the
researcher. We are interested in testing whether ϕ0 ∈ Φopt, i.e. assessing whether the policy
maker minimized the expected loss. To construct a test statistic, we consider a thought
experiment where the proposed policy rule (4) under ϕ0 is modified with some change τ in
response to the cost-push shock:

it = ϕ0
ππt + (ϕ0

ξ + τ)ξt + ϵt . (7)

If for any τ ̸= 0 we are able to lower the expected loss we may conclude that ϕ0 was not
optimal.

To verify whether this is the case, suppose that ϕ0 leads to a unique equilibrium, i.e.
ϕ0 ∈ Φ. Then, following the same steps that led to (5) we have that under (7)

Yt = (Γ0 +R0τ)ξt +R0ϵt , (8)

where Γ0 and R0 denote the responses to the structural shocks under the rule ϕ0 and are
defined in (5). To see how this expression arises, consider the modified version of (6) under
the augmented reaction function (7): 1 −κ 0

0 1 1/σ

−ϕ0
π 0 1


︸ ︷︷ ︸

=A

 πt

xt

it

 =

 1

0

ϕ0
ξ

 ξt +

 0

0

1

 τξt +

 0

0

1

 ϵt . (9)

The key insight is that τξt enters the equilibrium allocation for Yt = (πt, xt)
′ in exactly

the same way as ϵt, i.e. via A−1(0, 0, 1)′. This is understandable when viewing τξt as an
innovation to the policy rule, which in equilibrium has effect R0 on the policy objectives.
Indeed, any innovation to the instrument has an effect proportional to R0 in equilibrium,
the monetary shock is only a special case, which is usually normalized to have a unit effect
on it.

Now, as mentioned, if ϕ0 ∈ Φopt there should not be any τ ̸= 0 that is able to lower the
loss function. A necessary condition for this is that the gradient of the loss function with
respect to τ evaluated at τ = 0 should be zero. This leads to the following equivalence

ϕ0 ∈ Φopt ⇐⇒ ∇τELt|τ=0 ∝ R0′Γ0 = 0 . (10)
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This is a key result of this paper: if and only if the reaction function is optimal the impulse
responses of the cost-push shock on the policy objectives Γ0 should be orthogonal to the
impulse responses of the policy shock on the policy objectives R0. To see that R0′Γ0 = 0

implies ϕ0 ∈ Φopt, we note that the second derivative is given by ∇2
τELt = σ2

ξR′R > 0 and
hence a global (non-unique) minimum is obtained at ϕ0 and thus ϕ0 ∈ Φopt.

Intuitively, the inner product R0′Γ0 captures exactly (i) what the central bank did on
average to offset the cost-push shock, i.e. Γ0, and (ii) what the central bank could have done
to offset the cost-push shock, i.e. R0. Note that (ii) follows from our previous observation
that changes in the response to the cost-push shock, i.e. changes in ϕξ, have an equilibrium
effect on Yt that is proportional to R0.

In practice, we can use different macro econometric methods and identification ap-
proaches to estimate the impulse responses Γ0 and R0 (e.g. Ramey, 2016). We emphasize
that these methods typically only require the estimation of a reduced form econometric
model in combination with some identification strategy, e.g. short-run, long-run, or sign
restrictions, or external instruments, heteroskedasticity, non-Gaussianity, etc. This implies
that for testing whether R0′Γ0 = 0 we do not need to know the specific underlying structural
model nor the reaction function ϕ0.

That said, in this example we can easily verify the optimality condition as we know that
the optimal reaction function takes the form ϕopt

ξ = (κσ − ϕopt
π )/(1 + κ2) for any ϕopt

π > 1,
see Galí (2015, page 133). Writing out R0′Γ0 under any ϕ0 = ϕopt gives

Γ0′R0 = (1 + κϕ0
π/σ)

−2[−κ/σ , −1/σ]

[
1− κϕ0

ξ/σ

−ϕ0
π/σ − ϕ0

ξ/σ

]

=
−κ/σ + κ/σ + ϕ0

π/σ
2 − ϕ0

π/σ
2

(1 + κϕ0
π/σ)

2
= 0 .

This mechanically shows that under an optimal rule the gradient condition holds.

Optimal Reaction Function Adjustment

Besides testing whether the given reaction function is optimal we may also compute the
distance to the optimal reaction function. This provides a continuous measure for evaluating
policy makers and allows to assess how the reaction function should have been adjusted.

Specifically, we measure how far the policy maker’s choice ϕ0 is from the set of optimal
policies by

τ ∗ = argmin
τ

ELt s.t. Yt = (Γ0 +R0τ)ξt +R0ϵt

= argmin
τ

σ2
ξ (Γ

0 +R0τ)′(Γ0 +R0τ) , (11)

9



where the second equality uses that the structural shocks have mean zero and are uncorre-
lated. We refer to the statistic τ ∗ as the Optimal Reaction Function Adjustment or ORA
as it measures exactly how much more or less the policy maker should have responded
to the cost-push shock in order to minimize the loss function. It is easy to verify that
ϕ∗ = (ϕ0

π, ϕ
0
ξ + τ ∗) ∈ Φopt.

A closed form solution for the ORA statistic is given by

τ ∗ = −(R0′R0)−1R0′Γ0 , (12)

which is equal to the projection of Γ0 —what the policy maker did— on R0 —what the
policy maker could have done—. This projection coefficient can be obtained from the policy
problem in impulse response space:

Γ0 = −R0τ + U , (13)

where U is some remainder term. The minus sign in (13) is because the objective of the
central bank is to offset the effect of the cost-push shock, i.e. Γ0.The ORA is equal to the
least squares projection coefficient τ ∗ which minimizes Γ0 using −R0.

Comparing reaction functions

The ORA statistic can be used to compare the reaction functions of different policy makers.
To avoid excessive notation at this stage, consider comparing two policy makers that used
reaction functions ϕ0 and ϕ1, respectively, and let the economic environment that they faced
by captured by the parameter vectors θ0 and θ1, respectively, which include all coefficients
in the Phillips and IS curves.

For each policy maker we compute the distance to the set of optimal reaction functions,
noting that since the economic environments are different these sets are not the same. We
have

τ ∗0 = −(R0′R0)−1R0′Γ0 and τ ∗1 = −(R1′R1)−1R1′Γ1 .

We rank the policy maker with ϕ0 above policy maker with ϕ1 if |τ 0| < |τ 1|.
The key insight is that while the environments are different, the ORA statistics τ ∗0 and

τ ∗1 measure the same quantity: the distance to the optimal reaction function in units of the
policy instrument: e.g. a one unit average increase in the cost push shock the policy maker
should have increased the interest rate by τ units. Moreover, by explicitly measuring the
distance to optimality in the direction of the identified cost-push shock we avoid confounding
from initial conditions or other shocks.

In sum, this example illustrates how we can evaluate and compare policy makers based on
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their reaction function without knowing the reaction function. The next sections show that
these findings continue to hold for a general linear macro model and discuss the econometric
implementation.

3 Environment
We consider a researcher who is interested in evaluating a policy maker based on the My × 1

vector of gaps yt+h —deviations of some variables from the researcher’s desired targets—
for the current period h = 0 and possibly future periods h = 1, 2, . . .. We denote by
Yt = (y′t, y

′
t+1, . . .)

′ the path of the gaps that starts at a given time period t and we refer to
this path as the objectives. We aggregate the objectives in the loss function

Lt = EtY
′
tWYt , (14)

where Et(·) = E(·|Ft), with Ft the time t information set. The weighting matrix W is
assumed to be diagonal allowing the researcher to place more or less weight on certain
objectives and horizons.

Suppose that the policy maker has Mp instruments denoted by pt = (p1,t, . . . , pMp,t)
′. At

time t the policy maker can set the time t value of the instruments as well as their expected
future path. We denote the path by Pt = (p′t, p

′
t+1, . . .)

′ and the time t expected path is given
by EtPt. A generic model for Yt is completed by the path for the additional endogenous
variables Wt = (w′

t, w
′
t+1, . . .)

′, the path of the structural shocks Ξt = (ξ′t, ξ
′
t+1, · · · )′ and the

vector X−t = (y′t−1, w
′
t−1, p

′
t−1, y

′
t−2, . . .)

′ which captures the initial conditions. Combining we
have that the economy at time t can be written as{

AyyEtYt −AypEtPt − AywEtWt = ByxX−t + ByξEtΞt

AwwEtWt −AwpEtPt −AwyEtYt = BwxX−t + BwξEtΞt

, (15)

where A.. and B.. denote conformable linear maps. This model is general and allows ex-
pected future policy decisions to affect current and expected future outcomes. Many models
found the literature can be written in this form; prominent examples include New Keynesian
models and more modern heterogeneous agents models, see Barnichon and Mesters (2022)
and McKay and Wolf (2022) for a more elaborate discussion of this model class. We nor-
malize the non-policy news shocks EtΞt —exogenous shocks about the future state of the
economy that are released at time t— to have unconditional mean zero, unit variance and
to be uncorrelated with the initial conditions. We collect all parameters of the non-policy
block (15) in θ = {Ayy,Ayp,Ayw,Aww,Awp,Awy,Byx,Bwx,Byξ,Bwξ}, which can be thought
of as describing the economic environment that the policy maker faces.
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Turning to the policy block; we postulate that policy decisions can be written as

AppEtPt −ApyEtYt −ApwEtWt = BpxX−t + BpξEtΞt + Etϵt , (16)

where ϵt = (ϵ′t, ϵ
′
t+1, . . .)

′ a sequence of policy shocks and Etϵt transforms the policy shocks
into policy news shocks, i.e. exogenous shocks to the future path of Pt that are released at
time t. The policy rule (16) imposes no restrictions as it allows the policy maker to respond
to all available variables and shocks in the economy. We normalize all policy news shocks
Etϵt to have unconditional mean zero with unit variance, and to be uncorrelated with all
non-policy news shocks and initial conditions. We collect the coefficients of the policy rule
in ϕ = {App,Apy,Apw,Bpx,Bpξ} and refer to these as the reaction function.

We denote by Φ the set of all reaction functions ϕ for which the model (15)-(16) implies
a unique equilibrium. We define the set of optimal reaction functions as follows

Φopt =

{
ϕ ∈ Φ : ϕ ∈ argmin

ϕ∈Φ
ELt s.t (15) − (16)

}
. (17)

The definition implies that we only consider optimal reaction functions that lie in Φ, i.e. the
set of reaction functions which imply a unique equilibrium. In addition, optimal reaction
functions are defined as minimizing the unconditional loss function.

We observe that for any ϕ ∈ Φ we can write the expected path of the objectives of the
researcher as a linear function of the contemporaneous and expected future shocks as well
as the initial conditions.

EtYt = K(ϕ)EtΞt +∆(ϕ)X−t︸ ︷︷ ︸
=Γ(ϕ)EtVt

+R(ϕ)Etϵt , (18)

where the maps K(ϕ), R(ϕ) and ∆(ϕ) capture the causal effects of the structural shocks
EtΞt and Etϵt and the initial conditions X−t under ϕ, respectively. For convenience we have
defined Γ(ϕ) = [K(ϕ),∆(ϕ)] and EtVt = (EtΞ

′
t,X

′
−t)

′, such that EtVt includes all non-policy
inputs that (i) determine the objectives and (ii) are orthogonal to the policy shocks.

Clearly, the maps Γ(ϕ) and R(ϕ) also depend on the environment as summarized by θ,
but since θ is not under the control of the policy maker we omit this from the notation.
The precise mapping from the model coefficients A.. and B.. to Γ(ϕ) and R(ϕ) is provided
in Appendix B, but we will not require knowledge of this mapping in the main text.
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4 Measuring reaction function optimality
We take the position of a researcher who is interested in evaluating and ranking one or more
policy makers based on their reaction function, i.e. how they responded on average to the
non-policy shocks and initial conditions during their term. We postulate that each policy
maker faces an economy that can be represented by the generic model (15)-(16) where the
parameters θ and ϕ may vary across policy makers.8 For ease of notation we postulate that
the parameters are constant within the term of each policy maker, but our econometric
implementation in Section 5 can allow for parameter variation within each policy maker’s
term.

We first develop the methodology for evaluating the reaction function of a single policy
maker in population. We denote the reaction function of this policy maker by ϕ0 and work in
a setting where ϕ0 is unknown to the researcher. Our evaluation of ϕ0 is based on measuring
how far ϕ0 is from the set of optimal reaction functions Φopt as defined in (17) using the
ORA statistic. We then formalize how the ORA can be used as a comparative metric for
ranking the performance of multiple policy makers.

4.1 Orthogonality conditions

We start by discussing some necessary conditions that must hold if ϕ0 ∈ Φopt. These condi-
tions are generally useful as they provide the basis for evaluating policy makers and can be
used to derive different tests and measures of optimality.

The following proposition establishes a key result.

Proposition 1. Given the generic model (15)-(16), with Φ non-empty, we have that

ϕ0 ∈ Φopt ⇐⇒ R0′WΓ0 = 0 , (19)

where R0 ≡ R(ϕ0), Γ0 ≡ Γ(ϕ0) and Φopt is defined in (17).

The proof is shown in the appendix and follows similar steps that led to (10) in the New
Keynesian example above.

Expression (19) shows that under an optimal reaction function, ϕ0 ∈ Φopt, the dynamic
causal effects of the non-policy inputs EtVt on the objectives (i.e. Γ0) should be orthogonal
to the dynamic causal effects of the policy shocks on the objectives (i.e. R0). Intuitively, if a
policy maker follows an optimal reaction function, this function should have transformed the
effects of the non-policy inputs such that there is no more the policy maker can do to lower

8Note that the set of included variables is arbitrary in model (15)-(16), and by allowing θ and ϕ to vary
across policy makers we can also capture that specific variables perhaps played no role for certain policy
makers.
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the loss: the impulse responses to non-policy inputs should be orthogonal to the impulse
responses to changes in policy.

The key reason we do not need to know or estimate the functional form of the reaction
function is that the effect of that reaction function is already encoded in the impulse responses
Γ0 and R0. Thus knowledge of Γ0 and R0 is enough to evaluate the optimality of the reaction
function ϕ0.

Subset orthogonality conditions

One difficulty in practice is that there often exists insufficient exogenous variation to identify
all impulse responses Γ0 and R0. For instance, estimating R0 would require being able to
identify the contemporaneous shocks to all policy instruments as well as all the policy news
shocks that create exogenous variation in the expected policy paths.

Fortunately, this is not necessary as we can derive necessary conditions for the optimality
of the reaction function by considering any subset of causal effects that can be estimated.
Obviously such subset criteria cannot detect all deviations from optimality, but they do allow
to leverage all available identified shocks to evaluate the reaction function.

To set this up, we denote by R0
a the effects of Etϵa,t on EtYt under ϕ0, where Etϵa,t

is a vector formed from any subset or linear combination of the policy news shocks Etϵt.
Similarly, denote by Γ0

b the impulse responses of subsets or linear combinations EtVb,t on
EtYt. The key requirement for the shocks in EtVb,t is that they are orthogonal to the policy
shocks Etϵt, but it is not strictly necessary for them to have a specific interpretation.9

With this notation the following corollary summarizes the implication of a given subset
orthogonality condition.

Corollary 1. Given the generic model (15)-(16) we have that

R0′

a WΓ0
b ̸= 0 =⇒ ϕ0 /∈ Φopt . (20)

The result is of great practically relevant as it shows that researchers never have to
recover the entire causal maps Γ0 and R0 to evaluate the reaction function. For instance,
suppose a researcher is interested in testing the central bank’s reaction to an oil price shock
when setting the short term interest rate, then only the impulse responses of the researcher’s
objectives, say inflation and unemployment, to interest rate shocks and oil price shocks are
needed. Ideally, in this scenario we would include all interest rate news shocks, but in practice

9For instance, if a researcher is sure that a particular sequence of residuals does not depend on the policy
shocks such sequence can be used to form EtVb,t, see Gali and Gambetti (2020) for an identification approach
along these lines.
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we can conduct a subset test after only identifying, for instance, the contemporaneous policy
shock.

4.2 Optimal reaction adjustment

Suppose that ϕ0 is not optimal and the orthogonality conditions in Proposition 1 do not hold.
In such settings we are interested in computing how far ϕ0 is from the set of optimal reaction
functions to obtain a continuous measure for evaluating and comparing policy makers. We
compute this distance in the direction of the response to the non-policy shocks directly.
Specifically, we look for a map T = [TΞ, TX ] which alters the response to the non-policy
shocks and initial conditions to ensure that the orthogonality conditions holds. Consider the
augmented policy rule

A0
ppEtPt −A0

pyEtYt −A0
pwEtWt = (B0

px + TX)X−t + (B0
pξ + TΞ)EtΞt + Etϵt .

We can think about the augmented rule as a perturbation to the original rule (16) that was
based on the reaction function ϕ0. Given that ϕ0 ∈ Φ we can combine this policy rule with
the general model (15) to obtain the equilibrium representation

EtYt = (Γ0 +R0T )EtVt +R0Etϵt ,

where the equilibrium effect of T ̸= 0 is found to be equal to R0T EtVt on the objectives.
The Optimal Reaction Adjustment (ORA) for measuring the overall distance to the opti-

mal reaction function is defined as the T that minimizes the expected loss function. Formally,

T ∗ = argmin
T

ELt s.t. EtYt = (Γ0 +R0T )EtVt +R0Etϵt . (21)

Similar as in the NK example the ORA determines how the policy maker should have re-
sponded differently to the non-policy inputs EtVt to obtain an optimal reaction function for
all policy instruments. A given (i, j) entry of T measures how the policy maker should have
responded differently to the jth non-policy input when setting the ith policy instrument.

An explicit expression is given by

T ∗ = −(R0′WR0)−1R0′WΓ0 , (22)

which exists provided that the inverse exists, and highlights that the ORA can be viewed as
the projection of the causal effects of non-policy inputs on causal effects of policy shocks. The
weighting matrix W incorporates the preferences of the researcher who aims to determine
how the reaction function should have been adjusted to achieve the objective of minimizing
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the loss function (14).
The following corollary establishes a key property of the ORA.

Corollary 2. Given the generic model (15)-(16) we have that

ϕ∗ ∈ Φopt , where ϕ∗ = {A0
pp,A0

py,A0
pw,B0

px + T ∗
X ,B0

pξ + T ∗
Ξ } ,

where T ∗ = [T ∗
Ξ , T ∗

X ] is defined in (21).

The intuition for this result is as follows. The vector EtVt captures all non-policy inputs
that enter the economy at time t. These shocks and initial conditions affect the current
and expected future path of the objectives as well as the other endogenous variables in the
economy. By adjusting the response of the policy maker to these inputs, i.e. B0

px → B0
px+T ∗

X

and B0
pξ → B0

pξ + T ∗
Ξ , we can attain the minimum of the loss function as there are no other

distortions in the economy. Since this change does not affect the coefficients in the non-
policy block of the economy (15) there are no second round affects. To clarify, suppose
that the coefficients in (15) did depend on say Bpξ then changing these coefficients would
change the economic environment and hence adjusting B0

pξ → B0
pξ + T ∗

Ξ may not minimize
the loss given the new environment, i.e. the Lucas (1976) critique applies. By assuming that
the coefficients in (15) are invariant to changes in B0

pξ and B0
px we exclude this possibility.

Clearly, this restriction may not be reasonable for all applications, but it is satisfied for a
broad class of macro models that are commonly used for policy making.

The entries of the ORA can be individually studied — how should the response to a
specific non-policy shock be adjusted for the reaction function of a specific policy instrument
—, but we can also aggregate the entries to construct an overall measure of accuracy. Given
that preferences for different evaluation criteria are already included in the loss function,
we may simply sum the absolute or squared entries of T ∗ to obtain an overall measure of
distance.

Subset reaction adjustments

Similar as above we note that in practice we will often not be able to compute T ∗ as it
requires identifying the effects of all structural shocks and initial conditions. In such cases
we may still compute the distance to the optimal reaction function in the direction of the
non-policy inputs that can be identified for the policy instruments for which we can identify
the effect of an exogenous change. This allows to evaluate policy makers based on the
specific structural shocks that the researcher is able to identify. In other words, it allows to
leverage existing evidence on the effects of policy and non-policy variables on the objectives
to evaluate policy makers.
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Specifically, as in the previous section, suppose that we can identify the policy shocks
Etϵa,t and the non-policy inputs EtVb,t. The subset ORA is defined as

T ∗
ab = argmin

Tab∈Rda×db

ELt s.t. EtYt = (Γ0
b +R0

aTab)EtVb,t + Γ0
−bEtV−b,t +R0Etϵt , (23)

where R separates as [Ra : R−a] and Γ as [Γb : Γ−b]. The details for the decomposition are
provided in Appendix B.

Using that the structural shocks are mean zero and uncorrelated we can derive the closed
form solution

T ∗
ab = −(R0′

a WR0
a)

−1R0′

a WΓ0
b , (24)

which shows that the subset ORA is equal to the projection of the non-policy impulse
responses Γ0

b on the policy impulse responses R0
a.

We have the following result.

Corollary 3. Given the generic model (15)-(16) we have that the adjusted reaction function

ϕ∗
ab = {A0

pp,A0
py,A0

pw,B0
ab + T ∗

ab,B0
−a−b}

satisfies
ELt(ϕ

∗
ab) ≤ ELt(ϕ

0) ,

where B0
ab captures the entries of [B0

px,B0
pξ] corresponding to the responses of EtPa,t to EtVb,t

and B0
−a−b denotes the remaining entries.

The corollary ensures that adjusting the given reaction function for the policy instruments
in the direction of the identifiable non-policy shocks lowers the expected loss function. The
intuition here is the same as in the previous section: adjusting B0

paξb
does not change the

coefficients in the economy and hence for the class of models (15) such change is robust to
the Lucas critique.

4.3 Comparing policy makers

With the ORA and its properties established we now discuss how the ORA can be used
to compare policy makers. As examples we can think of evaluating different central banks
chairs based on their ability to control inflation and output gaps, or different presidents of a
country based on their ability to keep output close to potential. Our comparisons are based
on evaluating policy makers on their use of the same policy instruments for offsetting the
same type of non-policy shocks. As such we may generally compare policy makers from the
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same institution across different time periods or policy maker from different but comparable
institutions from different countries.

Suppose that there are p policy makers that the researcher aims to compare. Each policy
maker faces an economy that can be described by the general model (15), but the parameters
θ that govern the model may vary across policy makers, say θj for j = 1, . . . , p. Similarly,
each policy maker is assumed to set policy according to the generic rule (16), but may use
a different reaction function ϕj. Following the notation defined above, let ϕ0

j denote the
chosen reaction function of policy maker j. We note that while here we treat the parameters
as fixed within the term of each policy maker, in our econometric implementation section
below we show how we can extend the approach to allow the parameters to change within
terms.

Using the methodology established above we can compute for any given policy maker
the distance to the optimal reaction function in any identifiable direction using the (subset)
ORA statistic. Specifically, let

T j∗
ab = −(Rj,0′

a WRj,0
a )−1Rj,0′

a WΓj,0
b

denote the subset ORA statistic for policy maker j in the direction of responding to non-
policy inputs EtVb,t using the policy instruments moved by the policy shocks Etϵa,t. We recall
that Rj,0

a and Γj,0
b are the impulse responses of the objectives with respect to the policy

and non-policy inputs computed under the reaction function ϕ0
j and given the economic

environment θj.
The ORA statistics take into account the preferences of the researcher over the different

objectives or ranking criteria. As such if the researcher has no further preferences over the
types of shocks we may simply aggregate the entries of T j∗

ab , i.e.

tj∗ab = ∥vecT j∗
ab ∥ , (25)

where any desired norm ∥·∥ can be used. We rank policy makers based on tj∗ab, for j = 1, . . . , p,
where the smallest value corresponds to the best performing policy maker. For interpretation
purposes it is generally useful to present the ranking separately for each combination of
instrument and non-policy input as each ranking is informative about a specific dimension
of policy.

In practice there could be cases where the researcher has preferences over the types
of non-policy inputs. For instance, when evaluating a central bank one may find it more
important that the central bank offset oil price shocks as opposed to TFP shocks. In such
cases a weighted norm can be used in (25) to aggregate the entries of T j∗

ab .
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5 Econometrics of the ORA
In this section we discuss we discuss the computation of the optimal reaction function ad-
justment using observation data. Without loss of generality we will consider the subset ORA
statistic defined in (24). Corollaries 1 and 3 show that if T ∗

ab ̸= 0 then ϕ0 is not optimal and
adjusting by T ∗

ab brings the reaction function closer to the set of optimal reaction functions.
We first consider estimating T ∗

ab for a single policy maker, after which we consider estimating
multiple T j∗

ab ’s simultaneously.

5.1 Inference for the ORA

The starting point is the equilibrium representation (18), restated here for convenience.

EtYt = Γ0EtVt +R0Etϵt ,

where we recall that EtVt includes the non-policy shocks EtΞt and the initial conditions
X−t.

Following empirical practice, we truncate the relevant horizon at H and define Yt:t+H =

(y′t, . . . , y
′
t+H)

′ as the evaluation criteria of interest at time t. Further, suppose that the policy
maker under consideration was active for periods t = 1, . . . , n during which the reaction
function ϕ0 was used.

The causal effects R0
a and Γ0

b can be estimated by considering

Yt:t+H = Γ0
bEtVb,t +R0

aEtϵa,t +Ut:t+H , t = 1, . . . , n, (26)

where Ut:t+H includes all other structural shocks, both policy and non-policy inputs that are
not included in the selections a and b, respectively, as well as the forecast errors Yt:t+H −
EtYt:t+H .

In practice, we may not observe the structural shocks Etϵt and EtΞt directly. In such
cases we can replace the shocks by suitable endogenous variables on which the structural
shocks have a unit effect, i.e. a unit effect normalization (e.g. Stock and Watson, 2018).

After such possible substitutions we can recognize (26) as a system of stacked local
projections (Jordà, 2005). This implies that given (i) an appropriate identification strategy
and (ii) an accompanying estimation method, we can estimate the impulse responses R0

a

and Γ0
b using standard local projection methods. Any identification strategy — short run,

long run, sign, external instruments, etc — can be used, based on which an appropriate
estimation method — OLS or IV, with or without shrinkage, etc — can be selected, see
Ramey (2016) and Stock and Watson (2018) for different options. Moreover, we recall from
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Plagborg-Møller and Wolf (2021) that in population local projections and structural VARs
estimate the same impulse responses; therefore all SVAR methods discussed in Kilian and
Lütkepohl (2017), for instance, can also be adopted for estimating the impulse responses Γ0

b

and R0
a.

In sum, given (26), observational data that covers the term of the policy maker, and by
making use of the existing literature we can recover estimates for R0

a and Γ0
b . Here we will

not discuss any specific approach but instead directly postulate that the researcher is able
to obtain estimates, say R̂a and Γ̂b, which can be approximated by

vec

([
R̂a

Γ̂b

]
−

[
R0

a

Γ0
b

])
a∼ F ,

where F is some known distribution function that can be estimated consistently by F̂ . Such
approximation can be obtained for many impulse response estimators using both frequentist
(asymptotic and bootstrap) and Bayesian estimators.

Using the approximating distribution F̂ can simulate draws for R0
a and Γ0

b , and compute
T ∗
ab = −(R0′

a WR0
a)

−1R0′
a WΓ0

b for each draw. Given the sequence of draws we can construct
a confidence set for T ∗

ab, or any of its individual entries at any desired level of confidence.
We note that if the distribution F is normal we can use the delta method to analytically
compute the distribution of T ∗

ab.

GMM formulation

Besides simulating from the distribution of the impulse responses there exists an alternative,
more direct, GMM approach for estimating T ∗

ab. This approach effectively replaces estimating
Γ0
b by estimating T ∗

ab directly and has the benefit that it immediately gives the asymptotic
distribution of T ∗

ab in closed form.
The basis is the following generalized least squares transformation of the truncated equi-

librium representation (26).

YL
t:t+H = −(R0′

a WR0
a)

−1R0′

a WYt:t+H ,

where YL
t:t+H has dimension equal to the number of policy shocks considered which is typi-

cally much lower then the dimension of YL
t:t+H . The low-dimensional model for YL

t is given
by

YL
t = T ∗

abEtVb,t +Uτ
t where Uτ

t = Etϵa,t − (R0′

a WR0
a)

−1R0′

a WUt:t+H . (27)

We note that the error term Ṽτ
t is a function of all shocks except the non-policy shocks
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EtΞb,t.
For any non-policy input EtVb,t,j that is not be observed, say an oil price shock, we set

Wb,t,j = EtVb,t,j + other shocks where Wb,t,j is an observable variable on which the non-
policy input has a unit effect, e.g. the oil price. When the non-policy input is observed we
simply define Wb,t,j = EtVb,t,j. Similarly, suppose that the policy shocks Etϵa,t have a unit
effect on Pe

a,t = EtPa,t. Then we can also substitute these shocks with observable variables.
We obtain the models

YL
t:t+H = T ∗

abWb,t +Uτ
t and Yt:t+H = R0

aP
e
a,t +UR

t ,

where Uτ
t is a function of all shocks except again of the non-policy inputs EtVb,t. Similarly,

UR
t is a function of all shocks except of the policy shocks Etϵa,t.

Given the availability of instruments Za,t and Zb,t that are only correlated with Etϵa,t or
EtΞb,t, but not with UR

t or Uτ
t , we can estimate T ∗

ab and R0
a jointly based on the moment

conditions

E
[
(YL

t:t+H − T ∗
abWb,t)Z

′
b,t

]
= 0 and E

[
(Yt:t+H −R0

aP
e
a,t)Z

′
a,t

]
= 0 .

The instruments Za,t and Zb,t can be both internal or external instruments pending the
identifying assumptions for the structural shocks. As an example, suppose that the researcher
is interested in testing whether the the response of the central bank to an oil price shock
was appropriate on average when setting the short term interest rate. The instruments Za,t

could be taken as the high frequency identified monetary policy shocks from Gürkaynak,
Sack and Swanson (2005), whereas Zb,t may be the oil price shock from Hamilton (2003).
The corresponding policy rate Pa,t would be the Fed funds rate and the endogenous variable
Wb,t could be the price of crude oil.

Estimates for T ∗
ab and R0

a can be simultaneously obtained using standard nonlinear GMM
methods. We define the estimator

{T̂ab, R̂0
a} = argmin

Ra,Tab

(
1

n

n∑
t=1

ft(Ra, Tab)

)′

Ωn

(
1

n

n∑
t=1

ft(Ra, Tab)

)
, (28)

where Ωn is a positive semi-definite weighting matrix and

ft(Ra, Tab) =

[
(Zb,t ⊗ Ia)(Y

L
t:t+H − TabWb,t)

(Za,t ⊗ Ib)(Yt:t+H −RaP
e
a,t)

]
.

We emphasize that YL
t:t+H = −(R0′

a WR0
a)

−1R0′
a WYt:t+H , i.e a nonlinear function of R0

a and a
numerical minimizer is used in practice to find the minimum. Further, the efficient weighting
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matrix based on an estimate for the inverse of the variance limn→∞ Var(n−1/2
∑n

t=1 ft) can
be used to improve efficiency.

The asymptotic properties of (28) are well understood and a detailed account can be
found in Hall (2005). From the general theory we can deduce mild conditions under which T̂ab

is consistent for T ∗
ab and under which it is asymptotically normal. We provide the necessary

details for computing the GMM estimates and constructing confidence sets in the Appendix.
We emphasize that standard statistical software can be used to estimate T̂ab in this way.

5.2 Joint inference on ORAs

While the terms of policy makers may sometimes appear long, from the perspective of es-
timating impulse responses and ORA statistics terms are often quite short. For instance, a
four year presidency produces only 16 quarters of quarterly data, which is typically insuf-
ficient to estimate all impulse responses. Therefore it can be attractive to either (i) pool
some parameters across policy makers (e.g. Blinder and Watson, 2016) or (ii) impose some
dynamics by which the parameters fluctuate over time (e.g. Primiceri, 2005). Addition-
ally, the joint estimation of different ORA statistics facilitates implementing formal tests for
comparing different policy makers.

We discuss simultaneous estimation of ORA using both (i) breaks and (ii) smooth time-
varying parameter specifications.

Breaks

Consider the scenario where there are p policy makers and policy maker j operated in
periods t ∈ {nj, . . . , nj+1} using reaction function ϕ0

j in environment θj, for j = 1, . . . , p.
The truncated equilibrium model (26) can be stated for all policy makers simultaneously as

Yt:t+H =

p∑
j=1

1{tj ≤ t ≤ nj+1}
[
Rj,0

a Etϵa,t + Γj,0
b EtVb,t

]
+Ut:t+H , t = 1, . . . , n , (29)

where 1{} is the indicator function.
Given this representation estimates for the impulse responses can be obtained using

effectively the same GMM approach as outlined in the previous section. Or any other local
projection or structural VAR approach, for that matter. We note that for implementation
comparison tests it easier to estimate the jointly as this incorporates the correlation among
the estimates. Also, it allows for pooling of the effects of any control variables that may be
included.

We refer to Antoine and Boldea (2018) for a modern treatment of GMM models with
structural breaks. Note that we need not assume that the break dates are known a priori,
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instead we could let the data estimate the break points and hereby determine whether the
impulse responses, or preferably the ORA directly, has changed over time.

Time-varying parameters

There exists a broad literature that allows for time-varying parameters in reduced form
econometric models. Common ways of modeling time variation include specifying a random
walk model for the individual parameters (e.g. Primiceri, 2005) or allowing the parameters
to switch across different regimes (e.g. Sims and Zha, 2006). Most of these specifications
have been implemented in the context of structural vector autoregressive models, but there
also exists various papers in the GMM context that allow for time-varying parameters, Cui,
Feng and Hong (2022) for a recent contribution and further references.

The truncated equilibrium model with time varying parameters is given by

Yt:t+H = Γ0
b,tEtΞb,t +R0

a,tEtϵa,t +Ut:t+H , t = 1, . . . , n , (30)

where Γ0
b,t and R0

a,t depend on t and can be modeled in different ways. Common assumptions
include specifying an independent random walk for each parameter, allowing for switching
across regimes, or fixed smooth function approximations.

Each particular choice allows to estimate a path of the impulse responses, or after a
transformation like (27) directly the ORA, which can be aggregated over the terms of the
different policy makers for comparison. Clearly, this approach is attractive when one believes
that reactions functions, or the economic environment may have changed within the term of
the policy maker.

6 Ranking Fed chairs

7 Conclusion
In this paper, we showed that it is possible to evaluate and compare policy makers based
on the distance-to-optimality of their reaction function. We introduced ORA statistics to
measure the distance and showed that these could be computed from only the impulse re-
sponses to policy and non-policy shocks. Moreover, explicit knowledge of the policy maker’s
reaction function was not necessary. Intuitively, because the effect of an (unspecified) reac-
tion function is already encoded in the impulse responses to (non-)policy shocks, which are
estimable.
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Appendix A: Additional examples
Section 2 explained the workings of our methodology for the baseline New Keynesian model
where the loss function was taken as Lt = (π2

t + x2
t )/2. This set-up had the advantage that

all computations could be done in closed form. At the same time it did not highlight how
dynamics in either the model or the loss function would affect the intuition as presented.
To this extent, in this section we aim to bridge the gap between the simple example and
the general framework by providing two additional examples that aim to clarify how the
intuition for our methodology works in dynamic settings. We first consider the same baseline
NK model, but change the loss function of the researcher to be forward looking. Second, we
discuss the workings of our method when the underlying model is assumed to be given by a
structural VAR model. Both examples are of independent interest.

NK model with forward looking loss function
Consider the baseline New Keynesian model

πt = βEtπt+1 + κxt + ξt ,

xt = Etxt+1 −
1

σ
(it − Etπt+1) ,

where apart from the discount factor β the model is identical as in the main text. The loss
function that the researcher considers for evaluating the policy maker is given by

L0 =
1

2
E0

∞∑
t=0

βt(π2
t + x2

t ) ,

and the researcher aims to check whether the path for the nominal interest rate was set such
that EL0 was minimized. In this form the set-up is often referred to as the optimal policy
problem under commitment and optimal reaction functions are discussed in (e.g. Galí, 2015,
Section 5.1.2). Note that we can view this loss function as case a special case of our general
loss function (14) when taking Et as E0, i.e. starting at t = 0.

As a first step, we show how the NK model can be written in the general notation of
Section 2. Let Y0 = (π0, x0, π1, x1, . . .)

′, P0 = (i0, i1, . . .)
′, Ξ0 = (ξ0, ξ1, . . .)

′ and denote
by ϵ0 = (ϵ0, ϵ1, . . .)

′ the sequence of policy shocks (note that Wt does not exist in this
application). The general model (15) becomes

AyyE0Y0 −AypE0P0 = ByξE0Ξ0
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where the coefficient maps are given by

Ayy =


1 −κ −β 0 . . . . . .
0 1 −1/σ −1 0 . . .

0 0 1 −κ −β
. . .

0 0 0 1 −1/σ
. . .

... ... . . . . . . . . . . . .

 Ayp =



0 0 0 . . .
1/σ 0 0 . . .
0 0 0 . . .
0 1/σ 0 . . .

0 0 0
. . .

0 0 1/σ
. . .

... ... . . . . . .


and

Byξ =



1 0 0 . . .
0 0 0 . . .
0 1 0 . . .
0 0 0 . . .

0 0 1
. . .

0 0 0
. . .

... ... . . . . . .


.

The general form of the policy rule is given by

E0P0 −ApyE0Y0 = BpξE0Ξ0 + E0ϵ0 ,

where the expected path of the interest rate can be set as a function of any variable or shock
in economy.

The optimality conditions for this problem are given by

x0 = −κπ0 and xt = xt−1 − κπt , ∀ t = 1, 2, . . . , (31)

or
xt = −κp̂t ∀ t = 0, 1, 2, . . . ,

where p̂t = pt − p−1 denotes the (log) deviation between the price level and an “implicit
target” given by the price level prevailing one period before the central bank chooses its
optimal plan (Galí, 2015, page 135).

A possible interest rate rule that (a) implements this optimal allocation and (b) leads to
a unique equilibrium is given by

it = −[ϕp + (1− δ)(1− κσ)]
t∑

k=0

δkξt−k − (ϕp/κ)xt

for any ϕp > 0 (Galí, 2015, page 138). Note that this instrument rule is a special case of the
generic policy rule (??). The coefficients in the rule are given by

δ ≡ 1−
√

1− 4βa2

2aβ
, with a ≡ 1

1 + β + κ2
.
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The forecasts under the optimal allocation can be written as

E0π0 = δξ0 E0x0 = −κδξ0 E0πt = (δt+1 − δt)ξ0 E0xt = −κδt+1ξ0 (32)

for t ≥ 1 (Galí, 2015, page 136).
Next, we rewrite this example in our general notation. It follows that R, after some

tedious manipulations, can be written —under the optimal policy rule— as

R =



κ/(σv) κ2/(σ2v2) + κ/σv2 + κ/(σv) . . .
1/(σv) κ/(σ2v2) + 1/(σv2) . . .

0 κ/(σv) . . .
0 1/(σv)
0 0 . . .
... ... . . .


where v = 1−ϕp/(κ/σ). Note that we only show the first two columns for ease of exposition.
Given R and the forecasts (32) we can verify the equivalence condition, similar as shown in
equation (??) for the problem under discretion we have

∂L0

∂ϵ0

∣∣∣∣
it

=R′E0Y0

=



κ/(σv) κ2/(σ2v2) + κ/σv2 + κ/(σv) . . .
1/(σv) κ/(σ2v2) + 1/(σv2) . . .

0 κ/(σv) . . .
0 1/(σv)
0 0 . . .
... ... . . .



′ 

δξ0
−κδξ0

(δ2 − δ)ξ0
−κδ2ξ0

...

...


=


0
0
...
...

 .

This shows that R′E0Y0 = 0 must also hold under optimality when considering problems
with commitment.

In addition, note that as in the case under discretion, the impulse response matrix R is
sufficient to characterize the optimal targeting rule. Working under perfect foresight, the
condition R′Y0 = 0 corresponds exactly to the optimal targeting rule (31).

SVAR model
The next example that we consider is the structural VAR model (e.g. Sims, 1982). While
SVAR models have been criticized for not being robust to the Lucas (1976) critique, they
remain a useful, and often used, tool for macro policy making (e.g. Antolin-Diaz, Petrella and
Rubio-Ramírez, 2021). Moreover, they are commonly used for impulse response estimation
under different identification strategies (e.g. Kilian and Lütkepohl, 2017). As such we view
it useful to illustrate how our reaction function evaluation methodology works out when the
underlying model is a general SVAR model. We will not repeat all intuition obtained from
the New Keynesian examples, but constrain ourselves to highlighting the implications of
dynamic responses and the presence of multiple policy and non-policy shocks.
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Let the M -dimensional vector for objectives yt be aggregated in the static loss function

Lt = y′tyt . (33)

Suppose the policy maker has K < M policy instruments pt available to minimize the loss
function. The economy for xt = (y′t, p

′
t)

′ is given by the SVAR model10

A(L)xt = et , where A(L) = A0 − A1L− . . .− AqL
q , (34)

where L denotes the lag operator and et = (ξ′t, ϵ
′
t)

′ is the vector of structural shocks; ξt ∈ RM

capturing the non-policy shocks and ϵt ∈ RK the policy shocks. We assume that these shocks
have mean zero, unit variance and are mutually uncorrelated.

For exposition purposes we will assume that the researcher is only able to identify one
non-policy shock ξ1,t and one policy shock ϵ1,t. The equation for the first policy instrument
is given by

ap1p1p1,t + ap1p2:Kp2:K,t + ap1yyt = ap1x,1xt−1 + . . .+ ap1x,qxt−q + ϵ1,t , (35)

Let ϕ = {app, apy, apx,1, apx,q} denote the reaction function of the policy maker of which the
coefficients in (35) are a subset. Since, not all shocks can be identified we cannot estimate
ϕ nor the subset in (35) as, for instance, ap1y cannot be recovered.

Let Φ be the set of reaction functions for which (34) can be inverted. For any ϕ ∈ Φ we
get

xt = C(L)et with C(L) =

[
Γ1(L) Γ2:M(L) R1(L) R2:K(L)
Θξ1(L) Θξ2:M (L) Θϵ1(L) Θϵ2:K (L)

]
, (36)

where C(L) is the moving-average polynomial. The set of optimal reaction function is defined
similar as before Φopt = {ϕ ∈ Φ : ϕ ∈ argminϕ∈Φ ELt}.

Next, consider a policy maker who proposes ϕ0 ∈ Φ, we aim to measure the distance of
ϕ0 to Φopt in the direction of the response to ξ1,t.11 To measure this distance we consider
the augmented policy reaction function for p1,t

a0p1p1p1,t + a0p1p2:Kp2:K,t + a0p1yyt = a0p1x,1xt−1 + . . .+ a0p1x,qxt−q + τξ1,t + ϵ1,t , (37)

where τ is a constant that measures the additional response to ξ1,t. The moving average
representation for the objectives yt under (37) is given by

yt =
(
Γ0
1(L) + τR0

1(L)
)
ξ1,t + Γ0

2:M(L)ξ2:M,t +R0(L)ϵt , (38)

where again we see that the equilibrium effect of adjusting by τ is proportional to the, now
dynamic, effect of the policy shock R0

1(L).
To know whether ϕ0 is optimal we compute the gradient of the loss function with respect

10We omit any other endogenous variables wt for ease of exposition.
11Note that in the SVAR model there is no coefficient that explicitly capture the response to ξ1,t, instead

the policy maker’s response to ξ1,t follows from her responses to the endogenous variables Yt. Obviously this
does not prevent us from looking in the direction τξ1,t directly.
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to τ . We have

∇τELt = R0′

1 (Γ
0
1 +R0

1τ)

where R0 and Γ0
1 are the impulse response coefficients in the polynomials R1(L) and Γ1(L)

that capture the effect of ϵ1,t and ξ1,t on yt, yt+1, . . . under ϕ0. It follows that at if ϕ0 ∈ Φopt,
the gradient with respect to τ evaluated at τ = 0 should be zero, and we have that

R0′

1 Γ
0
1 = 0 .

The impulse responses of policy and non-policy shocks are orthogonal to each other. More-
over, we may set the gradient to zero to compute the distance to Φopt in the direction of ξ1,t.
We have the ORA statistic

τ ∗ = −(R0′

1 R0
1)

−1R0′

1 Γ
0
1 .

This measure can again be compared across policy makers who have different reaction func-
tions and operate in different environments.

We conclude that if the underlying economy can be written as a structural vector autore-
gressive model, we can evaluate and compare policy makers based on their reaction function
by simply evaluating τ ∗ — a simple function of the impulse responses to policy and non-
policy shocks —. The benefit of this approach is that it can be adopted even in scenarios
where A cannot be entirely identified and the reaction function cannot be estimated. More-
over, any type of identification and estimation strategy can be used to recover R0 and Γ0.
Finally, it is easy to verify that the same approach holds for all time-varying parameter
SVAR models (e.g. Primiceri, 2005), regime switching SVAR models (e.g. Sims and Zha,
2006) and state dependent SVAR models (e.g. Barnichon, Debortoli and Matthes, 2021).

Appendix B: Equilibrium relationships
We briefly discuss how the general model (15)-(16) can be written as (18). Define

A =

 Ayy Ayw Ayp

Awy Aww Awp

Apy Apw App

 , B =

 Byξ

Bwξ

Bpξ

 , J =

 0
0
I

 and Zt =

 Yt

Wt

Pt

 . (39)

The model (15)-(16) is equivalent to

AEtZt = BEtΞt + JEtϵt .

For any ϕ ∈ Φ we have that there exists unique equilibrium representation. This implies
that A is invertible and we obtain

EtZt = A−1B︸ ︷︷ ︸
=D1

EtΞt +A−1J︸ ︷︷ ︸
=D2

Etϵt .
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The block structure of D1 and D2 is given by

D1 =

 Γ
D1w

Θξ

 and D1 =

 R
D2w

Θϵ

 ,

where the maps Γ and R appear in the first position as they capture the effects of the shocks
on EtYt. The other maps capture the effects of the shocks on the endogenous variables EtWt

and EtPt.

C: Proofs
Proof of Proposition 1. Let T be a linear map, sufficiently small such that ϕ = {A0

pp,A0
py,A0

pw,B0
pξ+

T } ∈ Φ. If ϕ0 ∈ Φopt, ELt cannot be lowered by any T ̸= 0. Similar as in (18) we obtain
the equilibrium representation

Yt = (Γ0 +R0T )EtΞt +Vt ,

where Vt = R0Etϵt + Yt − EtYt and note that E[EtΞtV
′
t] = 0. The expected loss ELt

becomes

ELt =
1

2
E
(
[Γ0 +R0T ]EtΞt +Vt

)′ W (
[Γ0 +R0T ]EtΞt +Vt

)
=

1

2
Tr
{
[Γ0 +R0T ]′W [Γ0 +R0T ]ΣΞ

}
+

1

2
E (V′

tWVt)

The derivative of the map T → ELt is given by

R0′W(Γ0 +R0T )ΣΞ . (40)

Evaluating at T = 0 and setting the derivative to zero implies

R0′WΓ0 = 0 ,

is a necessary condition for optimality. Noting that T → ELt is a convex map, it follows that
R0WΓ0 = 0 is also sufficient for T = 0 being a global minimizer, and thus ϕ0 ∈ Φopt.

Proof of Corollary 1. The right implication of proposition 1 implies the claim.

Proof of Corollary 3. The left hand side of (??) is equivalent to the subset of (40) corre-
sponding to a, b and after post-multiplying (??) by Σ−1

Ξ . The right hand side follows by
direct calculation. The second part follows directly by noting T ∗

a,b sets the local gradient to
zero, hence it lowers the loss convex loss function.
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